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Abstract. With the recent growth of Linked Data on the Web there is an in-
creased need for knowledge engineers to find ontologies to describe their data.
Only limited work exists that addresses the problem of searching and ranking
ontologies based on a given query term. In this paper we introduce DWRank, a
two-staged bi-directional graph walk ranking algorithm for concepts in ontolo-
gies. We apply this algorithm on the task of searching and ranking concepts
in ontologies and compare it with state-of-the-art ontology ranking models and
traditional information retrieval algorithms such as PageRank and tf-idf. Our
evaluation shows that DWRank significantly outperforms the best ranking mod-
els on a benchmark ontology collection for the majority of the sample queries
defined in the benchmark.

1 Introduction

The growth in Linked Data coupled with the widespread use of ontologies in ver-
tical domains (e.g. bioinformatics, e-commerce, internet-of-things etc.) highlights an
increasing need to discover existing ontologies and the concepts and relations within.
The benchmark ontology collection that we use in the evaluation of this paper, for
example, includes 1022 ontologies that were retrieved through a Web crawl [2]. How-
ever, the potential to “reuse” these and other ontologies is hampered by the fact that
it is hard to find the right ontology for a given use case. There are several established
ontology libraries in vertical domains such as the Open Biological and Biomedical
Ontologies library3 or the BioPortal [14], where keyword queries are still the preferred
method to find concepts and relations in the registered ontologies. However, since there
may exist many ontologies that contain concepts and relations with their label match-
ing the keyword query, the matches need to be usefully ranked. There has been some
previous work, for example [7, 1, 14, 13], to tackle the problem of finding and ranking
ontologies. More recently, also dedicated ontology search engines have emerged [21],
but the ranking algorithms they use are based only on document-ranking algorithms.
Moreover, most of the ranking techniques in these ontology libraries and search engines
only consider the popularity of terms in the ontology corpus, often using the PageR-
ank algorithm, which although effective in some cases [2] hinders the visibility of newly
emerged well defined ontologies.
In this paper we propose a new ontology concept retrieval framework that uses a

number of techniques to rate and rank each concept in an ontology based on how
well it represents a given search term. The ranking in the framework is conducted in
two phases. First, our offline ranking algorithm, DWRank, computes the centrality of
a concept within an ontology based on its connectivity to other concepts within the
3 http://www.obofoundry.org/



ontology itself. Then, the authority of a concept is computed which depends on the
number of relationships between ontologies and the weight of these relationships based
on the authority of the source ontology. The assumption behind this is that ontologies
that reuse and are reused by other ontologies are more authoritative than others. In a
second, online query processing phase a candidate set for a top-k concept is selected
from the offline ranked list of ontologies and then filtered based on two strategies, the
diverse results semantics and the intended type semantics. The resulting list of top-k
ranked concepts is then evaluated against a ground truth derived through a human
evaluation published previously [2]. Our evaluation shows that DWRank significantly
outperforms the state-of-the-art ranking models on the task of ranking concepts in
ontologies for all ten benchmark queries in the ontology collection.
The remainder of the paper is structured as follows. In Section 2 we describe the

overall framework and briefly define some of the terms used throughout the paper. Sec-
tion 3 describes the offline ranking phase of our framework, in particular the DWRank
algorithm. Section 4 then describes the online query processing and filtering phase that
is independent of the offline ranking model. We evaluate the DWRank algorithm with
and without the additional filters in Section 5. We position our work in relation to
state-of-the-art in Section 6 before we conclude in Section 7.

2 Relationship-based top-k Concept Retrieval

In the following we first define the terms used throughout the paper. We then give a
brief overview of the mechanics of the ranking framework.

2.1 Preliminaries

An ontology in this paper refers to a graph based formalisation O = (V , E, L) of a
domain knowledge. V is a finite set of nodes where v ∈ V denotes a domain concept
in O, E is the edge set where (v, v′) ∈ E denotes an explicit or implicit relationship
between v and v′. L is a labelling function which assigns a label L(v) (resp. L(e) or
L(O)) to node v (resp. an edge e ∈ E or the ontology O). In practice the labelling
function L may specify (1) the node labels to relate the node to the referent concept,
e.g. person, place and role; and (2) the edge labels as explicit relationships between
concepts e.g., friendship, work and participation or implicit relationships e.g., sub-
concept and super-concept, and (3) the ontology label to relate the ontology to the
domain or some identity.

Intra-Ontology Relationships. An intra-ontology relationship Ia = ((v, v′), O) is
a directed edge (v, v′), where (v, v′) ∈ E(O) for v ∈ V (O) and v′ ∈ V (O).

Inter-Ontology Relationships. An inter-ontology relationship Ie = ((v,v′), O, O′)
is a directed edge (O, O′), where (v, v′) ∈ E(O), L(v) = L(O) , L(v′) = L(O′) and L
(v,v′) = owl:imports4.

Forward Link Concepts. Forward link concepts CF Links(v,O) is a set of concepts
V ′ in an ontology O, where V ′ ⊂ V(O) and ∀ vi ∈ V ′ , ∃ (v, vi) ∈ E(O).

Back Link Concepts. Back link concepts CBLinks(v,O) is a set of concepts V ′′ in
an ontology O, where V ′′ ⊂ V(O) and ∀ vj ∈ V ′′ , ∃ (vj , v) ∈ E(O).
4 http://www.w3.org/2002/07/owl#imports



2.2 Overview of the framework

The framework is composed of two phases as shown in Fig. 1. The first phase is an
offline phase where two indices, i.e. ConHubIdx and OntAuthIdx, are constructed for
the whole ontology corpus. The second phase is an online query processing phase where
a query is evaluated and the top-k concepts are returned to the user.

Fig. 1. Relationship-based top-k concept retrieval framework

Offline Ranking and Index construction: The framework first constructs a Con-
HubIdx on all concepts and OntAuthIdx on all ontologies in the ontology corpus O. The
ConHubIdx maps each concept of an ontology to its corresponding hub score. Similarly,
the OntAuthIdx maps each ontology to its precomputed authority score. The hub score
and authority score are defined in Sec. 3.1

Online Query Processing: Upon receiving a query Q, the framework extracts the
candidate result set CQ = {(v1, O1), ..., (vi, Oj)} including all matches that are seman-
tically similar to Q by querying the ontology repository. The hub score and authority
score for all (v,O) ∈ CQ are extracted from the corresponding indices as H(CQ) and
A(CQ) lists. A ranked list R(CQ) of a candidate result set is computed from H(CQ)
and A(CQ) along with the text relevancy measure. R(CQ) is further filtered to sat-
isfy two result set properties, i.e. the Diverse Result Semantics and the Intended Type
Semantics, as introduced in Sec. 4.3.

3 Offline Ranking and Index Construction

In this section the offline ranking phase of the relationship-based top-k concept retrieval
framework is described (cf. Fig. 2). First, we introduce the ranking model in Section 3.1
and then we introduce the index construction based on the ranking model in Section 3.2.

3.1 DWRank: A Dual Walk based Ranking Model

Our ranking model characterises two features of a concept to determine its rank in a
corpus:



1. A concept is more important, if it is a central concept to the ontology within which
it is defined.

2. A concept is more important, if it is defined in an authoritative ontology.

More precisely, first, the offline ranking module generates for each concept in the
corpus a hub score, a measure of the centrality of a concept, i.e. the extent that the
concept is related to the domain for which the ontology is formalised. Second, the
authority score is generated as a measure of the authoritativeness of the ontology.
A link analysis algorithm, i.e. PageRank, is performed that leverages the ontological
structure and semantics to compute these scores. However, the difference between
our model and a traditional PageRank-like algorithms is two-fold. Firstly, we perform
the link analysis independently on each ontology to find a hub score and then only
on the whole ontology corpus considering an ontology as a node and inter-ontology
relationships as links. Secondly, we differentiate the type of relationship (i.e. inter-
ontology and intra-ontology) and the direction of the walk varies on the basis of the
type of the relationship. Our Model DualWalkRank is named after its characteristic of
a dual directional walk to compute the ranks of concepts.

Fig. 2. Offline Ranking and Index Construction Phase

HubScore: The centrality of a concept within an ontology. The hub score is
a measure of the centrality of a concept within an ontology. We define a hub function
h(v,O) that calculates the hub score. The hub function is characterised by two features:

– Connectivity: A concept is more central to an ontology, if there are more intra-
ontology relationships starting from the concept.

– Neighbourhood: A concept is more central to an ontology, if there is an intra-
ontology relationship starting from the concept to another central concept.

According to these features, a concept accepts the centrality of another concept based
on its forward link concepts (like a hub). The hub function is therefore a complete



reverse of the PageRank algorithm [15] where a node accepts scores from its referent
nodes i.e. back link concepts. We adopt a Reverse-PageRank [9] as the hub function to
find the centrality of a concept within the ontology. The hub function is an iterative
function and at any iteration k, the hub function is featured as Eq.1.

hk(v,O) =
∑

vi∈CF Links(v,O)

hk−1(vi, O)
|CBLinks(vi, O)| (1)

Within the original PageRank framework there are two types of links in a graph,
strong and weak links. The links that actually exist in the graph are strong links.
Weak links are artificially created links by a damping factor α, and they connect all
nodes to all other nodes. Since data-type relationships of a concept do not connect it
to other concepts in an ontology, most PageRank-like algorithms adopted for ontology
ranking consider only object type relationships of a concept while ignoring others. We
adopt the notion of weak links in our hub function to be able to also consider data-type
relationships along with object-type relationships for the ontology ranking. We generate
a set of artificial concepts V(́O) in the ontology that act as a sink for every data-type
relationship and label these concepts with the data type relationship label. i.e. ∀ vj ∈
V ′, L(v′j) = L (vi,v′j). After incorporating weak links and weak nodes notions, Eq. 2
reflects the complete feature of our hub function.

hk(v,O) = 1− α
|V |

+ α
∑

vi∈CSF Links(v,O)∪CW F Links(v,O)

hk−1(vi, O)
|CBLinks(vi, O)| (2)

In Eq. 2, CSF Links(v,O) is a set of strong forward link concepts and CW F Links(v,O)
is a set of weak forward link concepts. Our hub function is similar to [22], but varies
from it as we consider weak nodes and we are not considering relationships weights.
The results presented in [22] also justify our choice of ReversePageRank over other
algorithms to measure the centrality. We normalise the hub scores of each concept v
within an ontology O through the z-score of the concept’s hub score after the last
iteration of the hub function as follows:

hn(v,O) = h(v,O)− µh(O)
σh(O) (3)

In Eq 3, hn(v,O) is a normalised hub score of v, µh(O) is an average of hub scores
of all concepts in the ontology and σh(O) is the standard deviation of hub scores of
the concepts in the ontology.

AuthorityScore: The authoritativeness of a concept. The authority score is
the measure of the authoritativeness of a concept within an ontology. As mentioned
earlier, the authoritativeness of a concept depends upon the authoritativeness of the
ontology within which it is defined. Therefore, we define the authority function a(O)
to measure the authority score of an ontology. Our authority function is characterised
by the following two features:

– Reuse: An ontology is more authoritative, if there are more inter-ontology rela-
tionships ending at the ontology.



– Neighbourhood: An ontology is more authoritative, if there is an inter-ontology
relationship starting from an authoritative ontology to the ontology.

Based on these two features, an inter-ontology relationship Ie((v, v′), O,O′) is con-
sidered as a “positive vote” for the authoritativeness of ontology O´ from O. The
PageRank is adopted as the authority function, whereby each ontology is considered a
node and inter-ontology relationships are considered links among nodes. Eq. 4 formalise
the authority function which computes the authoritativeness of O at the kth iteration.

ak(O) = 1− α
|O|

+ α
∑

Oi∈OBLinks(O)

ak−1(Oi)
|OF Links(Oi)|

(4)

In Eq. 4, OBLinks(O) is a set of back link ontologies and OF Links(O) is a set of
forward link ontologies. The definition of OF Links(O) (resp. OBLinks(O)) is similar to
CF Links(v,O) (resp. CBLinks(v,O)), however, the links are inter-ontology relationships.
Similar to the hub score, we also compute the z-score of each ontology after the

last iteration of authority function as follows:

an(O) = a(O)− µa(O)
σa(O) (5)

In Eq. 5, an(O) is the normalised authority score of v, µa(O) is an average of the
authority scores of all ontologies in the corpus and σa(O) is the standard deviation of
the authority scores of ontologies in O.

DWRank Score. Finally, we define the DWRank R(v,O), as a function of the text
relevancy, the normalised hub score and the normalised authority score. The function
is described as a quantitative metric for the overall relevance between the query Q and
the concept v; and the concept hub and authority score as follows:

R(v,O) = FV (v, Q) ∗ [w1h(v,O) + w2a(O)]

FV (v, Q) =
∑
q∈Q

fss(q, φ(qv)) (6)

In Eq. 6, w1 and w2 are the weights for the hub function and the authority function.
FV (v, Q) aggregates the contribution of all matched words of a node v, in an ontology
O, to the query keywords q ∈ Q. fss returns a binary value : it returns 1 if q has a
match φ(qv) in v, and 0 otherwise. The metric favours the nodes v that are semantically
matched to more keywords of the query Q.

3.2 Index Construction: An execution of DWRank

In this section, we explain the execution of the DWRank model and the construction
of the indices.



ConHubIdx. A bi-level index where each entry in the index maps a concept of an
ontology to its normalised hub score hn(v,O) as shown in Fig. 2 (top left). To construct
the ConHubIdx for all ontologies in O, (1) the hub function is executed in an iterative
way to get the hub score of all the concepts in ontology O, and (2) after the last
iteration, we compute the normalised hub scores and (3) insert the concepts along
with their normalised hub scores in an ontology to the index.

OntAuthIdx. An index where each entry in the index maps an ontology to its nor-
malised authority score an(O) as shown in Fig. 2 (bottom left). To construct the Ont-
AuthIdx on the corpus O, (1) the authority function is executed to get an auth score of
all the ontologies in O, (2) after the last iteration, the normalised authority scores are
computed, and (3) the ontology along with its normalised authority scores is inserted
as an entry to the index.

Inter-Ontology Relationships Extraction. As we mentioned earlier, the author-
ity function leverages the inter-ontology relationships that are directed links among
ontologies. If ontology OntA reuses the resources in ontology OntB, ontology OntA
declares the reuse of resources through an OWL import property i.e. owl:imports.
Since some ontology practitioners fail to explicitly declare the reuse of ontologies,
the owl:imports relationships in an ontology are often inaccurate representations of
the inter-ontology relationships. We therefore identify the implicit inter-ontology re-
lationships by considering the reused resources in the corpus. Finding the implicit
inter-ontology relationships involves the following steps:

1. Missing Relationships Detection: To find all missing inter-ontology relation-
ships we identify the resources that appear in multiple ontologies. If a resource
(referred to as “reused resource”) is used in multiple ontologies (referred to as
“hosting ontologies”) then there must be some inter-ontology relationships. If these
relationships are not explicitly defined then there are missing relationships among
the ontologies.

2. Relationship Direction Identification: Since inter-ontology relationships are
directed links between ontologies, another challenge is to find the direction of the
missing relationships. A part of the ontology corpus in Fig. 2 (top right), contains
a reused resource (i.e. filled node) that appears in three different ontologies O′,
O′′ and O′′′. In the absence of explicit relationships, some implicit relationships
exist and to create these relationships we need to identify the direction of the re-
lationships i.e. from O′ to O′′ and from O′′′ to O′′. To identify the direction, the
namespace of the reused resource are used. If the namespace of the reused resource
matches to the namespace of a hosting ontology (e.g. O′′), then the ontology is
selected as the “home ontology” of the reused resource and the inter-ontology rela-
tionships are directed from the hosting ontologies(i.e. O′, O′′′) to the home ontology
i.e. O′′.

3. Explicit relationships Creation: Once the missing relationships and their direc-
tions are identified, we create explicit inter-ontology relationships using owl:imports
properties.

An important point to consider is that although an ontology OntA may reuse more
than one resource from another ontology OntB there will only be one inter-ontology
relationship fromOntA toOntB according to the semantics of the owl:imports property.



Therefore, independently of the number of resources that are reused in OntA from
OntB, we create a single inter-ontology relationship from OntA to OntB.
Table 1 and Table 2 show the top five ontologies in the benchmark ontology collection

[2] and the corresponding number of inter-ontology relationships that are directed to
these ontologies (i.e. reuse count) counted through explicit and implicit relationships,
respectively.

Table 1. Top five reused ontologies based on explicit inter-ontology relationships

URI Count
http://def.seegrid.csiro.au/isotc211/iso19150/-2/2012/basic 36
http://purl.org/dc/elements/1.1/ 25
http://www.ifomis.org/bfo/1.1 16
http://www.w3.org/2006/time 16
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl 15

Table 2. Top five reused ontologies based on implicit inter-ontology relationships

URI Count
http://www.w3.org/2002/07/owl# 881
http://www.w3.org/2000/01/rdf-schema 361
http://www.w3.org/1999/02/22-rdf-syntax-ns 298
http://xmlns.com/foaf/0.1/ 228
http://www.w3.org/2004/02/skos/core 140

4 Online Query Processing

In this section, we first describe the concept retrieval task and then we outline the
online query processing technique that finds the top-k ranked concepts for Q in O with
the highest semantic relevance.

4.1 Concept Retrieval Task.

Given a query string Q = {q1, q2, . . . ,qk}, an Ontology corpus O = {O1, O2, . . .
,On} and a word sense similarity threshold θ, the concept retrieval task is to find
the CQ = {(v1, O1), . . . ,(vi, Oj)} from O, such that there is a surjective function fsj

from Q to CQ where (a) v has a partial or an exact matched word φ(qv) for q ∈ Q (b)
for a partially matched word, SenSim(q , φ(qv)) ≥ θ. We refer to CQ as a candidate
set of Q introduced by the mapping fsj .
SenSim(q , φ(qv)) is a word similarity measure of a query keyword and a partially

matched word in L(v).

4.2 Query Evaluation

In the online query evaluation (c.f Fig. 3), first a candidate set for a top-k concept is
selected from the ontology data store i.e. OntDataStore, and then the relevance of each
concept is calculated based on the formulae defined in Eq. 6.



Fig. 3. Online Query Processing

Candidate Result Set Selection. A keyword query evaluation starts with the se-
lection of a candidate set CQ for Q. A candidate result set CQ is characterised by two
features:

1. To be part of the candidate set a candidate concept v must have at least one exact
or partial match φ(qv) for any query keyword q ∈ Q as part of the value of (a)
rdfs:label (b) rdfs:comment (c) rdfs:description property; or ∃ q ∈ Q | φ(qv)
is part of L(v).

2. The word sense similarity of q and φ(qv) i.e. senSim(q,φ(qv)) should be greater
than the sense similarity threshold θ.

In our current implementation, we check the word sense similarity using WordNet
and set a word sense similarity threshold θ = 0.85. Each entry in a candidate list
denotes a candidate concept ’v’ and is a pair (v,O) (shown in Fig. 3) of v and O where
v ∈ V(O). Since for the reused resources there are multiple hosting ontologies, therefore
’v’ may have multiple entries in a candidate set if it is a reused resource.

Concept Relevance. For each entry in the candidate list, two scores are retrieved
from the stored indices built during the offline ranking phase. The entry (v,O) is used
to retrieve the hub score of concept v in ontology O from the ConHubIdx, and the
authority score of ontology O from the OntAuthIdx. The two scores are combined
according to the formulae of Eq. 6, that provides the final concept relevance of each v
to the Query Q.

4.3 Filtering top-k results

In this section, we discuss the filtering strategies of our framework to enhance the
semantic similarity of the results to the keyword query. We introduce two properties
for the top-k results:



Diverse Results Semantic. Considering the semantics of a query allows us to re-
move repetitive results from the top-k results to increase the diversity in the result
set. As mentioned earlier, if a candidate concept v is reused/extended in ’n’ hosted
ontologies i.e. {O1, O2, ..., On} then it may appear multiple times in a candidate
result set (i.e. CQ = {(v,O1), (v,O2),...,(v,On)}). In this case we remove the du-
plicates from the candidate result set.

Intended type Semantic. The semantic differentiates the intended type from the
context resource of a concept. The label of a concept v may have multiple keywords
as a description of the concept e.g., the label of a concept in the GND ontology has
the keywords “Name of the Person”5. Here “Name” is the intended type, whereas
“Person” is the context resource. According to the intended type semantic property
a concept should appear in the top-k if and only if its intended type matches to
at-least one of the query keywords q ∈ Q.

Algorithm 1: top-k Filter
Input: Concept Relevance Map R(CQ) = {[(v1, O1),r1], .. , [(vn, On),rn]}
Output: top-k results L(CQ) = {[(v1, O1),r1], .. , [(vk, Ok),rk]}

1 Rs(CQ) /* A map to store intermediate results */
2 for i ∈ [1, n] do
3 e ← R(CQ).get(i);
4 if R(CQ).contains(e′)

⋂
v(e)= v(e′) ∩ O(e) 6= O(e′) then

5 Rs(CQ).put([(v,Oh), rh]);
6 for e′′ where v(e′′) = v and O(e′′) 6= Oh do
7 Rs(CQ).put([(v,O′′), (r′′ − rh)]);
8 R(CQ).removeAll(e where concept is v);
9 else

10 Rs(CQ).put(e);

11 Rs(CQ) ← sortByValue(Rs(CQ));
12 while (L(CQ).size() ≤ k)

⋂
(i ∈ [1, n]) do

13 e ← R(CQ).get(i);
14 if φ (qv(e)) is a multi-keyword match then
15 if It(φ (qv(e))) = q then
16 L(CQ).put(e);

17 else
18 L(CQ).put(e);

19 return L(CQ)

Algorithm 1 explains the top-k results filtering process. It takes as input a Concept
Relevance Map R(CQ) and returns the top-k results. First, the diverse results semantics
are preserved (line 2-10) for R(CQ), and then the check for intended type semantics is
applied (line 11-18) until the top-k results are retrieved.
A map Rs(CQ) is initialised to store the intermediate results that preserve the diverse

results semantics. All candidate concepts in R(CQ) that appear only once in R(CQ)
preserve the diverse results semantics, therefore they become part of Rs(CQ) (line 10).
For all reused concepts, first the home ontology Oh(v) of the concept v is identified.
5 http://d-nb.info/standards/elementset/gnd#NameOfThePerson



The entry e= [(v,O),r] ∈ R(CQ) for which the ontology of the concept v is its home
ontology (i.e. O=Oh(v)) becomes part of the Rs(CQ) (line 5). For all other entries e′′
for v a new entry is created by subtracting the relevance score of e i.e. rh from the
r′′ and add it to the Rs(CQ) (line 6-7). The process decreases the relevance score of
duplicate entries by a factor of rh. Then all such e′′ from R(CQ) are removed since
they have already been dealt with through candidate concepts of v.
The next step is to check the intended type semantic. For brevity, a detailed discussion

of the intended type checking is exempted from Algorithm 1. The ontology structure
and the Information Retrieval method are used to identify the intended type. For a
concept v, its sub-classes, super-classes and inter-ontology relationships are extracted
as the context of v. The WS4J6 API is used to calculate the similarity of different words
in the concept v with its context. The word that has a higher similarity score in regards
to the context is considered as the intended type of the concept. However, to reduce the
cost of ensuring the intended type semantic for top-k results, the filter is only applied
until we retrieved the top-k results in the final results L. For this, first the Rs(CQ) is
sorted in a decreasing order based on its relevance score r, so the more relevant results
for query Q are at the top of the Rs(CQ) (line 11). Then the intended type of the
candidate concept is checked only until ’k’ concepts are selected from Rs(CQ) or there
are no more results in R(CQ) (line 12). If the concept v has a single exact or partial
matched word φ qv(e) then by default it preserves the semantics and becomes part of
L(CQ) (line 18), otherwise we check its intended type. If its intended type is equal to
the query keyword q ∈ Q, the concept is included in L(CQ) otherwise, it is ignored.

5 Experimental Evaluation

In the following we present an experimental evaluation of our relationship based top-k
concept retrieval framework on a benchmark suite CBRBench - Canberra Ontology
Ranking Benchmark [2]. We conducted two sets of experiments to evaluate: (1) the
effectiveness of the DWRank ranking model presented in Sec. 3 and (2) the effectiveness
of the additional filtering phase presented in Sec. 4.

5.1 Experimental Settings

To evaluate our approach we use a benchmark suite CBRBench [2], that includes a
collection of ontologies, a set of benchmark queries and a ground truth established by
human experts. This collection is composed of 1022 ontologies and ten keyword queries:
Person, Name, Event, Title, Location, Address, Music, Organization, Author and
Time. The benchmark evaluates eight state-of-the-art ranking algorithms: Tf-Idf [17],
BM25 [16], Vector Space Model (VSM)[18], Class Match Measure (CMM) [1], PageRank
(PR)[15], Density Measure (DEM)[1], Semantic Similarity Measure (SSM)[1] and Be-
tweenness Measure (BM)[1] on the task of ranking ontologies. We use the performance
of these ranking models as the baseline to evaluate our approach. For a fair analysis,
we implemented two versions of our approach: (1) DWRank: the DWRank model with
the diverse root semantics (2) DWRank+Filter: the DWRank model with both the
diverse root semantics and the intended type semantics. The reasoning for having two
different implementations of our top-k concept retrieval framework is, that we want to
be able to compare the effectiveness of the DWRank model against the top-k results
6 https://code.google.com/p/ws4j/



of the baseline ranking models of CBRBench - which means the diverse root seman-
tics model of DWRank is considered as to be evaluated against the baseline ranking
models. As the intended type semantics can be applied to any of the baseline ranking
models to improve their performance, the DWRank+Filter can not be compared to the
baseline ranking models and we only evaluate the effectiveness of the intended type se-
mantics filter compared to DWRank without filters. The effectiveness of the framework
is measured in terms of its Precision (P), Mean Average Precision (MAP), Discounted
Cumulative Gain (DCG) and Normalised Discounted Cumulative Gain (NDCG).

5.2 Experimental Results
We next present our findings.

Effectiveness of DWRank In the first set of experiments, we evaluated the effec-
tiveness of DWRank in comparison with the eight baseline ranking models. We ran the
ten sample queries on the ontology collection and retrieved the top-k results according
to the proposed ranking model. We recorded the P@10, the MAP@10, the DCG@10 and the
NDCG@10. The effectiveness measure results of the DWRank are shown in Table 3, where
column header corresponds to benchmark query terms and row header corresponds to
evaluation metrics.

Table 3. DWRank Effectiveness

Person Name Event Title Loc. Addr. Music Org. Author Time
P@10 0.9 0.7 1 0.7 0.7 0.8 0.7 0.9 0.8 0.8
MAP@10 0.98 0.82 1 0.88 0.86 0.94 0.80 0.85 0.78 0.74
DCG@10 37.58 19.11 35.12 12.45 24.88 23.53 14.82 33.70 18.24 22.53
NDCG@10 0.51 0.41 0.51 0.26 0.60 0.59 0.4 0.53 0.48 0.49

Next, we compared our results with the baseline for the same dataset with the sample
queries. The results are shown in Fig. 4. Each graph here presents an effectiveness
measure of a ranking model for all ten queries, where the x-axis is the ranking model
and the y-axis is the unit of measure. Each box on a graph presents the range of
effectiveness measure for 10 sample queries according to the gold standard. Fig. 4
shows the maximum, minimum and average performance of DWRank in comparison
to the performance of the baseline ranking models for each of the ten queries. The graph
shows that DWRank performs better than the best performing ranking algorithm for
most queries. For the address query, the P@10 and MAP@10 for DWRank is lower than
the other best performing ranking model. However, the maximum average MAP@10 for
DWRank on ten queries is 0.84 that is greater than the average of Tf-Idf, the best
baseline ranking models, (i.e., 0.55). The box plot also shows that P@10 and MAP@10 of
DWRank ranges from 0.7 ~1.0 that means the performance of DWRank is more stable
on the ontology collection for the sample queries than the baseline ranking models.
Similarly, the DCG@10 values in Fig. 4(c) and NDCG@10 values in Fig. 4(d) for the

ranking models show that DWRank is more effective than the baseline models. The
maximum and minimum measures are closer to the Betweenness Measure (BM) and
the Tf-Idf model, however, the average performance of DWRank is much higher than
the average performance of the BM and Tf-Idf models.



Fig. 4. Effectiveness of Ranking Model

Fig. 5 compares the MAP@10 (resp. NDCG@10) for DWRank on all ten queries with the
maximum MAP@10 (resp. NDCG@10) achieved with any of the baseline ranking model on
the sample queries. The result shows that DWRank performs best for MAP@10 (resp.
NDCG@10) for all but one query. The experiment confirms our claim about the stable
performance of the DWRank algorithm.
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Fig. 5. MAP@10 and nDCG@10 for DWRank in comparison with the best value for any
ranking model on sample queries

Effectiveness of DWRank+Filter. For the evaluation of the filter performance,
we ran the ten sample queries of the benchmark collection with the DWRank model
extended with the filter proposed earlier, i.e. intended type semantics. Fig. 6 shows the
effectiveness of DWRank compared to DWRank+Filter. The average P@10 increased
from 0.8 to 0.9, i.e. a 12 % increase in the effectiveness of the results.
From the evaluation it is obvious that the filter improves the overall performance of

our framework. A detailed analysis on the precision and recall of the filter is omitted
from this paper for brevity. However, some True positive (TP), False positive(FP), True
negative (TN) and False negative (FN) examples regarding our current implementation
of the intended type semantic filter are shown in Table 4. We analyse the top-10 results
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Fig. 6. Filter Effectiveness

of DWRank without intended type semantic filter and then with the filter. For each
query if there are TN, FN, FP examples we selected them or otherwise a random TP
example.

Table 4. Intended Type Semantic Filter Performance in Relationship-based top-k Concept
Retrieval Framework

Query term Label of concept Human Intended Type
Judgement Filter Judgement

person personal communication model × ×
name gene name × ×
event academic event X X
title spectrum title × ×

location hematopoiesis location trait × ×
address E45_address X ×
music sound and music computing × ×

organization 3D structural organization datrum × ×
author author list X ×
time time series observation × X

6 Related Work
The Linked Open Vocabularies (LOV) search engine7, initiated in March 2011, is to
the best of our knowledge, the only purpose-built ontology search engine available on
the Web. It uses a ranking algorithm based on the term popularity in Linked Open
Data (LOD) and in the LOV ecosystem [21].
There are also some ontology libraries available that facilitate the locating and re-

trieving of potentially relevant ontology resources [13]. Some of these libraries are
domain-specific such as the Open Biological and Biomedical Ontologies library8 or the
BioPortal [14], whereas others are more general such as OntoSearch [19] or the TONES
Ontology Repository9. However, as discussed by Noy & d’Aquin [13] only few libraries
support a keyword search, only one (Cupboard [4]) supports a ranking of ontologies
based on a keyword query using an information retrieval algorithm (i.e. tf-idf), and
none support the ranking of resources within these ontologies.
7 http://lov.okfn.org
8 http://www.obofoundry.org/
9 http://owl.cs.manchester.ac.uk/repository/



Semantic Search engines such as Swoogle [6] (which was initially developed to rank
ontologies only), Sindice.com [20], Watson [5], or Yars2 [10] do allow a search of on-
tology resources through a keyword query. The ranking in these search engines fol-
lows traditional link-based ranking methods [12], in particular adapted versions of
the PageRank algorithm [15], where links from one source of information to another
are regarded as a ‘positive vote’ from the former to the latter. Often, these ranking
schemes also take the provenance graph of the data into account [11]. AKTiveRank
[1], ranks ontologies based on how well they cover specified search terms. Falcon [3] is
a popularity-based scheme to rank concepts and ontologies. Other strategies, mainly
based on methods proposed in the information retrieval community, are employed in
Semantic Search [8], but what all these methods have in common is that they are tar-
geted to rank instances, but do not work well for ranking concepts and properties in
ontologies [7, 1]. Another related approach is presented in [22] that identifies the most
important concepts and relationships from a given ontology. However, the approach
does not support ranking concept that belong to multiple ontologies.

7 Conclusion and Future Work
In this paper we have presented a relationship-based top-k concept retrieval and ranking
framework for ontology search. The ranking model is comprised of two phases, an offline
ranking and index construction phase and an online query and evaluation phase. In
the offline ranking phase our DWRank algorithm computes a rank for a concept based
on two features, the centrality of the concept in the ontology, and the authority of the
ontology that defines the concept. The online ranking phase filters the top-k ranked
list of concepts by removing redundant results and by determining the intended type of
the query term and removing concept types that are not closely related to the intended
query type. We evaluated our DWRank algorithm without the online query processing
filters against state-of-the-art ranking models on a benchmark ontology collection and
also evaluated the added performance of the proposed filters. The evaluation shows
that DWRank outperforms the best performing ranking algorithm for most queries
while exhibiting a more stable performance (i.e. MAP@10 of 0.84) than the average
of the best performing ranking models of the benchmark (i.e. MAP@10 of 0.55 ). The
filters proposed in the online ranking phase further increased the average P@10 by
12%. Although our algorithm shows significantly improved performance compared to
the state-of-the-art in ontology ranking models, we believe further improvements are
possible through learning the weights in computing the authority and the hub score
using linear classification model. Also, in the online query processing phase we could
pre-compute indices for the diverse result semantics and intended type semantics to
increase the performance of the online query.
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